

Animal Health Matters. For Safe Food Solutions. Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Economic Affairs SECO

Measures of disease spread

Marco De Nardi

Objectives

- 1. Describe the following measures of spread: range, interquartile range, variance, and standard deviation
- 2. Discuss examples using measures of spread in epidemiology

Describe the following measures of spread: range, interquartile range, variance, and standard deviation

Understanding "Spread"

Age in 3 student classes (2nd primary)

Same center

but ...

different spread

Understanding "Spread"

Age in 3 student classes (2nd primary)

Frequency distribution is a representation, either in a graphical or tabular format, that indicate the way data are distributed over a range of values, by showing the number and percentage of individuals within wach group of values.

In this case they all have high frequencies in the centre of the distribution and low frequencies at the 2 extremes (**upper** and **lower tails** of the distribution)

Measures of Spread

Definition: Measures that quantify the amount of variation, or dispersion, in a dataset

Also known as:

- "Measure of dispersion"
- "Measure of variation"

Common measures

- Range
- Interquartile range
- Variance
- Standard deviation

Definition: difference between largest and smallest values

• In **statistics**, the range is reported as a single number and is the result of subtracting the maximum from the minimum value

• In **epidemiology**, the range is often the largest and smallest observations in the sample, rather than the difference between the largest and smallest

Finding the Range of Length of Stay Data

Number of nights spent in the hospital for 27 patients following infection from Staphilococcus spp...

0, 2, 3, 4, 5, 5, 6, 8, 9, 9, 9, 10, 10, 10, 10, 11, 12, 12, 12, 13, 14, 16, 18, 18, 22, 27, 49

What is the range of values?

Is the Range Sensitive to Outliers?

Interquartile Range (IQR)

Definition: The difference between the first and third "quartiles" (defined on next slide)

Properties / Uses:

- A modification of the range that is less sensitive to outliers
- Calculated as the difference between two data values, but not the two most extreme

Quartiles

- Definition: Quartiles are the values that split the data into four equal parts
- 25% of observations are below the first quartile (Q1)
- 25% of observations are between Q1 and Q2 (median)
- 25% of observations are between Q2 (median) and Q3
- 25% of observations are above Q3

Milk Safety Project 12

Interquartile Range — Length of Stay Data

Calculating the Quartile Positions in a Dataset with N Observations

 Position of Q1:
 1*(n+1) / 4

 Position of Q2 (Median) :
 2*(n+1) / 4

 Position of Q3:
 3*(n+1) / 4

Example: In a dataset with 55 observations, the position of the third quartile (Q3) would be:

3 * (55+1) / 4 = 168 / 4 = 42

So the third quartile is the **value** in the **42nd position** in the ordered list

Determining IQR in Length of Stay Data

Number of nights in the hospital for 27 patients

						Q1		
0,	2,	3,	4,	5,	5,	6,	8,	9,
9,	9,	10,	<mark>Q2</mark> 10,	10,	10,	11,	12,	12,
12,	13,	14,	16,	18,	18,	22,	27,	49
		Q 3	Pos	<u>ition</u>		Va	alue	
Q	1:		1*(2	27+1) /	4 =	7 th -	→	6
Q2 (Median):			2*(27+1) / 4 = 14 th			4 th -	→	10
Q3:			3*(27+1) / 4 = 21 st			1 st -	→	14

Interquartile range: 14 - 6 = 8

Interquartile Range — Length of Stay Data

How to represent quartiles and interquartiles?

Box and whiskers plot

Variance and Standard Deviation

General Description: deviations of each sample observation from the mean.

Variance

- Average of squared deviations from mean
- Sum (x_i mean)² / (n-1)

Standard deviation

• Square root of variance

The variance and standard deviation are related measures that quantify how closely clustered the observed values are to the mean.

Variance and Standard Deviation

When describing how far each observation is from the mean, some values will be positive and

some will be negative

Variance and Standard Deviation describe this dispersion of data by squaring the values to eliminate negative numbers

Equations for Variance and Standard Deviation

- x : mean
- x_i : value
- n : number of data points
- s²: variance
- s : standard deviation

$$s^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{(n-1)}$$

$$s = \sqrt{\frac{\sum (x_{i} - \overline{x})^{2}}{(n-1)}}$$

V

Standard Deviation – Properties / Uses

When data are approximately normally distributed (bellshaped curve), then:

- 68.3% of the data fall within 1 SD of the mean
- 95.5% of the data fall within 2 SD of the mean
- 95.0% of the data fall within 1.96 SD of the mean
- 99.7% of the data fall within 3 SD of the mean

Length of Stay Data

Number of nights spent in the hospital for 27 patients

$(0-12)^2 = 144$	$(9-12)^2 = 9 (12-12)^2 =$	0
$(2-12)^2 = 100$	$(9-12)^2 = 9 (13-12)^2 =$	1
$(3-12)^2 = 81$	$(10 - 12)^2 = 4 (14 - 12)^2 =$	4
$(4 - 12)^2 = 64$	$(10 - 12)^2 = 4 (16 - 12)^2 =$	16
$(5-12)^2 = 49$	$(10 - 12)^2 = 4 (18 - 12)^2 =$	36
$(5-12)^2 = 49$	$(10 - 12)^2 = 4 (18 - 12)^2 =$	36
$(6-12)^2 = 36$	$(11 - 12)^2 = 1(22 - 12)^2 =$	100
$(8-12)^2 = 16$	$(12 - 12)^2 = 0 (27 - 12)^2 =$	225
$(9-12)^2 = 9$	$(12 - 12)^2 = 0 (49 - 12)^2 = 1$	1369

Sum = 2370; Var = 2370/26 = 91.15; SD -√91.15 = 9.55

Standard Deviation – Properties / Uses

When data are approximately normally distributed (bellshaped curve), then:

- 68.3% of the data fall within 1 SD of the mean
- 95.5% of the data fall within 2 SD of the mean
- 95.0% of the data fall within 1.96 SD of the mean
- 99.7% of the data fall within 3 SD of the mean

Normal Distribution

Discuss examples using measures of spread in epidemiology

Example: Using the Range in Epidemiology

The range is commonly used when reporting:

- Incubation period
- **Duration of illness**
- Age of cases

Agent	Incubation period (days)	Person to person transmission	Morbidity/mortality if untreated	Diagnosis
Ba. anthracis	1–5	No	High/high	Culture, serology, ELISA, PCR
Y. pestis	2-3	Yes	High/high	Culture, serology, ELISA, PCR
Brucella sp.	5-60	No	High/low	Culture, serology, ELISA, PCR
Bu. mallei	3–7	No	High/low	Culture, serology, ELISA, PCR
Bu. pseudomallei	3–7	No	High/low	Culture, serology, ELISA, PCR
Botulinum toxin	1–5	No	High/high	ELISA, mouse inoculation for toxin detection
Variola virus	7–17	Yes	High/high	Serology, virus isolation, ELISA, PCR
Viral hemorrhagic fever	4–21	Yes	High/high	Serology, virus isolation, ELISA, PCR

Summary of characteristics of selected biological warfare agents

Source: Thavaselvam and Vijayaraqhavan. J Pharm Bioallied Sci. 2010 Jul-Sep; 2(3): 179–188

Example: Using the IQR in Epidemiology

The interquartile range (IQR) is reported when the presence of outliers can skew other measures

Example: Using the Standard Deviation in Epidemiology

The standard deviation is often reported along with the mean to show variability in the data

Table 1. Body composition and severity of disease among HIV positive and HIV negative individuals with/without tuberculosis

Characteristic [mean, (SD)] ^c	HIV positive	with TB (n=31)	HIV negative with TB (n=32)		
	Men (n=10)	Women (n=21)	Men (n=18)	Women (n=14)	
Age in yrs	30.9 (4.6)	29.2 (5.9)	26.0 (7.3)	26.3 (4.6)	
BMI kg/m ²	18.4 (1.7)	18.6 (3.0)	18.2 (2.0)	20.3 (4.3)	
LMI in kg/m ²	16.6 (1.3)	15.4 (0.9) ^b	16.6 (1.5)	16.1 (0.9)	
FMI in kg/m2	1.8 (0.6)	3.3 (2.1)	1.6 (0.8)	4.6 (3.6) ^a	
Severity TBscore	6.5 (1.5)	5.6 (2.6)	6.8 (2.3)	5.9 (2.4)	

Source: Mupere et al. BMC Public Health 2012, 12:1050

Example: Using the Standard Deviation in Epidemiology

The standard deviation helps detect unusual increases in disease and can be used to establish alert thresholds

← 2 SD 260 M+2SD=253 240 220 Post-200 Flooding 180 Diarrhea 160 5 140 **Outbreak in** Mean 120 M=113,3 Jakarta, 100 Indonesia, 80 60 Jan-Feb 40 2002 20 4/1 5/1-2 6/2 44/11 45/11 46/11 47/1148/11-1249/12 50/12 51/12 52/12 1/1 2/1 3/1 7/2 8/2 9/2 Weel

Source: Chretien et al, PLoSsmedicine, Mar 2008 Vol 5(3).

A =C2C3

♦=C3 ♦=C1C2C3

Cusum Flags: C1=Mild Sensitivity C2=Moderate Sensitivity C3=Ultra Sensitivity

- - - Avg Last 7 Intervals - C1 -C1

Animal Health Matters. For Safe Food Solutions. Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Economic Affairs SECO

Thanks